Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Призма в геометрии — определение, формулы и примеры». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Призма — это любой многогранник, стороны которого имеют форму параллелограмма. Также у его основания может появиться любой многогранник — от треугольника до n-угольника. Кроме того, основания призм всегда совпадают. Это не касается боковых граней — они могут существенно различаться по размеру.
При устранении неисправностей встречается не только область основания призмы. Может потребоваться знание боковой поверхности, т.е всех граней, не являющихся основанием. Вся поверхность уже будет объединением всех граней, составляющих призму.
Иногда в задачи входит высота. Он перпендикулярен основаниям. Диагональ многогранника — это отрезок, который попарно соединяет две вершины, не принадлежащие одной грани.
Следует отметить, что площадь основания прямой или наклонной призмы не зависит от угла между ними и боковыми гранями. Если у них одинаковые формы на верхнем и нижнем краях, их области будут одинаковыми.
Четырехугольная призма
Его основание — один из известных четырехугольников. Это может быть прямоугольник или квадрат, параллелепипед или ромб. В любом случае для расчета площади основания призмы вам понадобится другая формула.
Если основание — прямоугольник, его площадь определяется следующим образом: S = ab, где a, b — стороны прямоугольника.
При работе с четырехугольной призмой площадь основания обычной призмы рассчитывается по формуле для квадрата. Потому что именно он оказывается внизу. S = a2.
Если основание — параллелепипед, потребуется следующее равенство: S = a * on. Бывает, что задаются сторона параллелепипеда и один из углов. Таким образом, для вычисления высоты потребуется дополнительная формула: at = в * sin A. Кроме того, угол A примыкает к стороне «в», а высота противоположна этому углу.
Если в основании призмы находится ромб, для определения его площади потребуется та же формула, что и для параллелограмма (поскольку это его частный случай). Но вы также можете использовать это: S = ½ d1 d2. Здесь d1 и d2 — две диагонали ромба.
Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.
Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.
Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.
Площадь поверхности призмы, онлайн расчет
Геометрия 6,7,8,9,10,11 класс, ЕГЭ, ГИА
Элементы правильной четырехугольной призмы
На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:
- Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
- Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
- Боковая поверхность — сумма площадей всех боковых граней призмы
- Полная поверхность — сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
- Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
- Диагональ B 1 D
- Диагональ основания BD
- Диагональное сечение BB 1 D 1 D
- Перпендикулярное сечение A 2 B 2 C 2 D 2 .
Она имеет в основании фигуру, имеющую три вершины, то есть треугольник. Он, как известно, бывает разным. Если то достаточно вспомнить, что его площадь определяется половиной произведения катетов.
Математическая запись выглядит так: S = ½ ав.
Чтобы узнать площадь основания в общем виде, пригодятся формулы: Герона и та, в которой берется половина стороны на высоту, проведенную к ней.
Первая формула должна быть записана так: S = √(р (р-а) (р-в) (р-с)). В этой записи присутствует полупериметр (р), то есть сумма трех сторон, разделенная на два.
Вторая: S = ½ н а * а.
Если требуется узнать площадь основания треугольной призмы, которая является правильной, то треугольник оказывается равносторонним. Для него существует своя формула: S = ¼ а 2 * √3.
Четырехугольная призма
Ее основанием является любой из известных четырехугольников. Это может быть прямоугольник или квадрат, параллелепипед или ромб. В каждом случае для того, чтобы вычислить площадь основания призмы, будет нужна своя формула.
Если основание — прямоугольник, то его площадь определяется так: S = ав, где а, в — стороны прямоугольника.
Когда речь идет о четырехугольной призме, то площадь основания правильной призмы вычисляется по формуле для квадрата. Потому что именно он оказывается лежащим в основании. S = а 2 .
В случае когда основание — это параллелепипед, будет нужно такое равенство: S = а * н а. Бывает такое, что даны сторона параллелепипеда и один из углов. Тогда для вычисления высоты потребуется воспользоваться дополнительной формулой: н а = в * sin А. Причем угол А прилегает к стороне «в», а высота н а противолежащая к этому углу.
Если в основании призмы лежит ромб, то для определения его площади будет нужна та же формула, что для параллелограмма (так как он является его частным случаем). Но можно воспользоваться и такой: S = ½ d 1 d 2 . Здесь d 1 и d 2 — две диагонали ромба.
Тут всё понятно,впервые начинаю понимать стереометрию
Супер Aper! Рады помочь!
Когда читаю теорию этого учебника, такое ощущение, что я разговариваю с другом. Настолько все просто и приятно. Сказать, что я влюбилась в этот материал, ничего не сказать. Спасибо вам!
Бася, вы нас растрогали таким комментарием. Спасибо большое! Удачи на экзамене!
Некоторые комментарии прошлых лет об этой статье:
Илья
26 ноября 2017
Огромное вам спасибо за созданный сайт, он очень удобен и информативен. Мне сложно представить какое количество времени было потрачено на «переработку» материала в понятном и доступном виде.Теперь есть источник чистых знаний, без лишней «воды», который не только помогает узнать новое, но и систематизировать информацию в голове. Жаль, что я не нашел сайт раньше. Вы лучшие!
Дмитрий
21 февраля 2018
Сайт отличный!Все подробно описано. Никогда не понимал эту тему, но благодаря создателям этого сайта я наконец понял эту тему. Спасибо вам за ваши труды. Очень вам благодарен.
Regina
29 марта 2018
Аааааааа,это просто лучшее. Никогда не разбиралась в геометрии…Готовясь к зачету искала все сайты на эту тему. Нашла вас. Ввы все объяснили просто и доступно. Спасибо большое!
Настя
21 мая 2018
Красивый сайт, ничего глаза не режет, смотреть и читать приятно.
Женя
27 февраля 2019
можете указать свои инициалы? мне это для проекта надо)
Анна
29 апреля 2019
Преподнесено очень понятным языком, с наглядными картинками, спасибо) Хотелось бы хоть пример одной задачи и решение чтобы было открыто бесплатно, чтобы понять на сколько хорошо поясняете, но я думаю все ок.
Жанна
27 апреля 2020
Спасибо! Я — учитель и мне очень понравилось!
Николай
04 июня 2020
Все очень доступно и понятно. Только вот не написано в статье про диагональ призмы. А так все просто супер, подготовился к сессии по данному материалу 🙂
Алексей Шевчук
05 июня 2020
Николай, спасибо. Диагонали в разных призмах разные, а в треугольной её и вовсе нет, поэтому длина диагонали — частный случай, а не какая-то полезная формула. Стоит рассмотрения разве что диагональ прямоугольного параллелепипеда — она вычисляется по теореме Пифагора и равна корню из суммы квадратов рёбер.
Перед тем как переходить к рассмотрению формул для площади основания и поверхности призмы того или иного вида, следует разобраться, о какой фигуре идет речь.
Призма в геометрии представляет собой пространственную фигуру, состоящую из двух параллельных многоугольников, которые равны между собой, и нескольких четырехугольников или параллелограммов. Количество последних всегда равно числу вершин одного многоугольника. Например, если фигура образована двумя параллельными n-угольниками, тогда количество параллелограммов будет равно n.
Соединяющие n-угольники параллелограммы называются боковыми сторонами призмы, а их суммарная площадь — это площадь боковой поверхности фигуры. Сами же n-угольники называются основаниями.
Выше рисунок демонстрирует пример призмы, изготовленной из бумаги. Желтый прямоугольник является ее верхним основанием. На втором таком же основании фигура стоит. Красный и зеленый прямоугольники — это боковые грани.
Указания к решению задач
При решении задач на тему «правильная четырехугольная призма» подразумевается, что:
Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия — призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .
Площадь поверхности призмы
Площадь правильной призматической фигуры — это сумма всех площадей боковых поверхностей, а также нижнего и верхнего оснований. Площадь боковой поверхности находится как сумма площадей параллелограммов:
где n — количество граней, a — сторона параллелограмма, а h — его высота.
Площадь оснований вычисляется по формулам расчета площадей соответствующих многоугольников. К примеру, если в основании призмы лежит равносторонний треугольник, то
а если правильный шестиугольник, то
Так как призма имеет два одинаковых основания, то формула общей площади поверхности фигуры принимает вид:
Если вам необходимо найти площадь поверхности правильной призматической фигуры, то воспользуйтесь нашим онлайн-калькулятором. Для вычисления вам понадобится ввести три переменных:
Рассмотрим примеры использования данной формулы в реальной жизни.
а. Упростите все переменные данной формулы для объема. B обозначает площадь основания, а h 1 и h 2 обозначают самый короткий и самый длинный элементы усеченного цилиндра, показанного выше.
B = площадь круглого основания
B = πr 2
б. Разделите усеченный цилиндр на два твердых тела так, чтобы клиновая часть имела объем, равный половине объема верхнего цилиндра высотой h 2 — h 1. Объем верхнего цилиндра обозначен V 1. С другой стороны, нижняя часть представляет собой цилиндр высотой h 1 и объемом V 2.
V = (1/2) V 1 + V 2
V 1 = B (h 2 — h 1)
V 2 = B xh 1
V = (1/2) (B (h 2 — h 1)) + (B xh 1)
V = (1/2) (B xh 2) — (1/2) (B xh 1) + (B xh 1)
V = B
V = πr 2
Окончательный ответ: объем усеченного правого кругового цилиндра равен V = πr 2.
Как найти площадь основания призмы
Под объемом многогранника понимают часть пространства, которая заключена между его гранями. Для вычисления объема произвольного вида призмы необходимо воспользоваться той же самой формулой, что и для объема цилиндра. Она имеет следующий вид:
V = So*h
Несмотря на простоту этого выражения, расчет может осложняться тем, что сначала нужно вычислить высоту и площадь основания. Для наклонной призмы с неправильным выпуклым или вогнутым основанием эта задача не является тривиальной и не имеет общего решения. В таком случае следует воспользоваться общим подходом: зная двугранный угол при основании и одну из диагоналей основания или боковое ребро, можно вычислить высоту фигуры; площадь многоугольного основания складывается из площадей элементарных фигур, формулы для которых известны.
Определение призмы в геометрии звучит следующим образом: это пространственная фигура, состоящая из двух одинаковых n-угольников, расположенных в параллельных плоскостях, соединенных друг с другом своими вершинами.
Получить призму не представляет никакого труда. Представим, что есть два одинаковых n-угольника, где n — это число сторон или вершин. Поместим их так, чтобы они были друг другу параллельны. После этого вершины одного многоугольника следует соединить с соответствующими вершинами другого. Образованная фигура будет состоять из двух n-угольных сторон, которые называются основаниями, и n четырехугольных сторон, представляющих собой в общем случае параллелограммы. Совокупность параллелограммов образует боковую поверхность фигуры.
Существует еще один способ геометрического получения рассматриваемой фигуры. Так, если взять n-угольник и совершить его перенос в другую плоскость при помощи параллельных отрезков равной длины, то в новой плоскости мы получим исходный многоугольник. Оба многоугольника и все параллельные отрезки, проведенные из их вершин, образуют призму.
Рисунок выше демонстрирует Так она называется потому, что ее основания представляют собой треугольники.
Выше было дано определение призмы, из которого понятно, что главными элементами фигуры являются ее грани или стороны, ограничивающие все внутренние точки призмы от внешнего пространства. Любая грань рассматриваемой фигуры принадлежит к одному из двух типов:
- боковая;
- основания.
Боковых n штук, и они являются параллелограммами или их частными видами (прямоугольниками, квадратами). В общем случае боковые грани отличаются друг от друга. Граней основания всего две, они представляют собой n-угольники и друг другу равны. Таким образом, всякая призма имеет n+2 стороны.
Помимо сторон, фигура характеризуется своими вершинами. Они представляют собой точки, где соприкасаются одновременно три грани. Причем две из трех граней всегда принадлежат боковой поверхности, а одна — основанию. Таким образом, в призме нет специально выделенной одной вершины, как, например, в пирамиде, все они являются равноправными. Число вершин фигуры равно 2*n (по n штук для каждого основания).
Наконец, третьим важным элементом призмы являются ее ребра. Это отрезки определенной длины, которые образуются в результате пересечения сторон фигуры. Как и грани, ребра также имеют два разных типа:
- либо образованы только боковыми сторонами;
- либо возникают на стыке параллелограмма и стороны n-угольного основания.
Число ребер, таким образом, равно 3*n, причем 2*n из них относятся ко второму из названных типов.
Выделяют несколько способов классификации призм. Однако все они основаны на двух особенностях фигуры:
- на типе n-угольного основания;
- на типе боковой стороны.
Для начала обратимся ко второй особенности и дадим определение и прямой. Если хотя бы одна боковая сторона является параллелограммом общего типа, то фигура называется наклонной, или косоугольной. Если же все параллелограммы представляют собой прямоугольники или квадраты, то призма будет прямой.
Дать определение можно также несколько иначе: прямая фигура — это та призма, у которой боковые ребра и грани перпендикулярны ее основаниям. На рисунке показаны две четырехугольные фигуры. Левая является прямой, правая — наклонной.
Для описания размеров рассматриваемых фигур используют следующие параметры:
- высота;
- стороны основания;
- длины боковых ребер;
- объемные диагонали;
- диагонали боковых сторон и оснований.
Для правильных призм все названные величины связаны друг с другом. Например, длины боковых ребер одинаковы и равны высоте. Для конкретной n-угольной правильной фигуры существуют формулы, позволяющие по двум любым линейным параметрам определить все остальные.
Треугольная призма все формулы и примеры задач
Существует несколько типов призм. Все они отличаются друг от друга всего двумя параметрами:
- видом n-угольника, образующего основания;
- углом между n-угольником и боковыми гранями.
Например, если основания являются треугольниками, тогда и призма называется треугольной, если четырехугольниками, как на предыдущем рисунке, тогда фигура называется четырехугольной призмой, и так далее. Кроме этого, n-угольник может быть выпуклым или вогнутым, тогда к названию призмы тоже добавляется это свойство.
Угол между боковыми гранями и основанием может быть либо прямой, либо острый или тупой. В первом случае говорят о прямоугольной призме, во втором — о наклонной или косоугольной.
В особый тип фигур выделяют правильные призмы. Они обладают самой высокой симметрией среди остальных призм. Правильной она будет только в том случае, если является прямоугольной и ее основание — это правильный n-угольник. Рисунок ниже демонстрирует набор правильных призм, у которых число сторон n-угольника изменяется от трех до восьми.
Пожалуй, самой простой задачей при работе с призмами является проблема нахождения площади основания правильной фигуры. Поскольку оно образовано n-угольником, у которого все углы и длины сторон являются одинаковыми, то всегда можно разделить его на одинаковые треугольники, у которых известны углы и стороны. Суммарная площадь треугольников будет площадью n-угольника.
Еще один способ определить часть площади поверхности призмы (основание) заключается в использовании известной формулы. Она имеет следующий вид:
Sn = n/4*a2*ctg(pi/n)
То есть площадь Sn n-угольника однозначно определяется исходя из знания длины его стороны a. Некоторую сложность при расчете по формуле может составить вычисление котангенса, особенно когда n>4 (для n≤4 значения котангенса — это табличные данные). Для определения этой тригонометрической функции рекомендуется воспользоваться калькулятором.
На примере треугольной призмы рассмотрим, как можно найти площадь основания этой фигуры.
Сначала рассмотрим простой случай — правильную призму. Площадь основания вычисляется по приведенной в пункте выше формуле, нужно подставить в нее n=3. Получаем:
S3 = 3/4*a2*ctg(pi/3) = 3/4*a2*1/√3 = √3/4*a2
Остается подставить в выражение конкретные значения длины стороны a равностороннего треугольника, чтобы получить площадь одного основания.
Теперь предположим, что имеется призма, основание которой представляет собой произвольный треугольник. Известны две его стороны a и b и угол между ними α. Эта фигура изображена ниже.
Мы разобрали, как найти площадь основания призмы. Боковая поверхность этой фигуры всегда состоит из параллелограммов. Для прямых призм параллелограммы становятся прямоугольниками, поэтому суммарную их площадь вычислить легко:
S = ∑i=1n(ai*b)
Здесь b — длина бокового ребра, ai — длина стороны i-го прямоугольника, которая совпадает с длиной стороны n-угольника. В случае правильной n-угольной призмы получаем простое выражение:
S = n*a*b
Если призма является наклонной, тогда для определения площади ее боковой поверхности следует сделать перпендикулярный срез, рассчитать его периметр Psr и умножить его на длину бокового ребра.
- К чему снятся змеи женщине? Толкование снов
- 5 стадий принятия неизбежного. Психология человека
- Речь: классификация речи, виды и стили речи. Устная и письменная речь
- Зачем нужна география в жизни? Зачем нужно изучать географию?
- Чем отличается университет от института? Институт и университет: в чем разница
- Информатика – это наука… Что изучает информатика?
- Как хоронят мусульманина. Мусульманский обряд похорон
Задачи на расчет треугольной призмы
Задача 1 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:
V = 1/2 · 6 · 8 · 5 = 120.
Задача 2.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.
Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.
Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .
Ответ : 25 + 10√7 ≈ 51,46 см 2 .